
Next Generation Sequencing – The Role of New Sequence Technologies in Shaping the Future of Veterinary Science

Hosted by the RCVS Charitable Trust

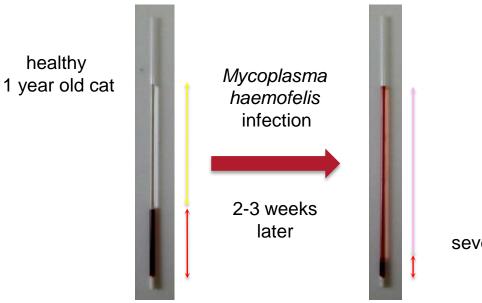
Feline Haemoplasmosis Using genome sequencing to shed light on a highly unusual genus

Séverine Tasker s.tasker@bristol.ac.uk

Emi Barker emi.barker@bristol.ac.uk

What are haemoplasmas?

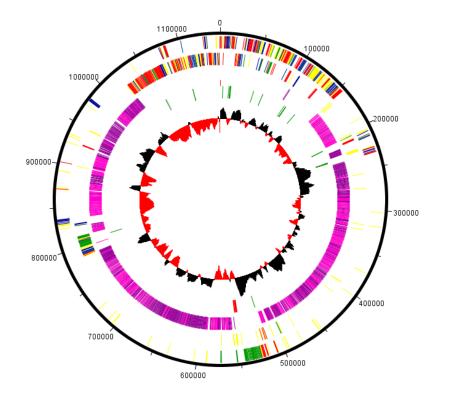
- Bacteria
 - Phylogenetically clustered within the *Mycoplasma* genus (previously *Haemobartonella* and *Eperythrozoon* genera)
 - Share similarities with mucosal mycoplasmas
 - No cell wall = resistant to families of antibiotics e.g. penicillins
 - Very small genome & physical size
 - Fastidious growth requirements or are uncultivatable
- Red blood cell tropic
 - Cause of infectious anaemia in a variety of mammalian species
- Worldwide distribution


Zoonotic – emerging infectious disease

Keline haemoplasma infection

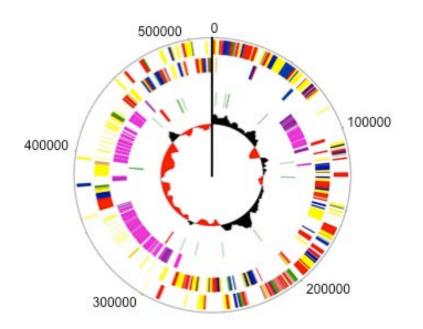
- Is really common!
 - Mycoplasma haemofelis: 0.4 46.6%
 - *Candidatus* Mycoplasma haemominutum': 10 46.7%
 - *Candidatus* Mycoplasma turicensis': 0.4 26%
- Can rapidly result in fatal disease

Asymptomatic healthy carriers exist


severe haemolytic anaemia

Ke Mycoplasma haemofelis genome results

- 1.15 Mbp circular genome
- 1,580 genes including coding for 1,545 putative proteins



- 21% matched nonhaemoplasma proteins
- 73% were repeated genes encoding unmatched hypothetical proteins (paralogous repeats)
- 6% were non-paralogous uncharacterised hypothetical proteins

- 0.51 Mbp circular genome
- 583 genes including coding for 547 putative proteins

- 47% matched nonhaemoplasma proteins
- 33% were repeated genes encoding unmatched hypothetical proteins (paralogous repeats)
- 20% were non-paralogous uncharacterised hypothetical proteins

Applications of whole genome sequencing

• Predict metabolic capabilities to direct in vitro culture attempts

- Carbohydrate metabolism genes limited to glycolytic pathway: glucose = sole energy source
- Range of metabolic pathways identified or missing limited synthesis of nucleotides / co-factors (vitamins, folate)
- Compare low and high pathogenicity species
 - Pathogenic determinants
 - Vaccine candidates
 - Targets for novel diagnostic tests
- Provide data to support transcriptomic / proteomic studies

Version Publications

- 1st haemoplasma genome to be published (*M. haemofelis* Langford 1)
- Reference sequences for M. haemofelis and 'Ca. M. haemominutum'

Vol. 193, No. 8

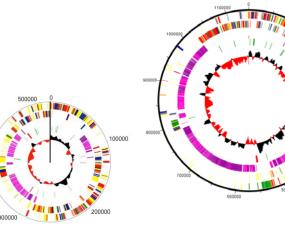
JOURNAL OF BACTERIOLOGY, Apr. 2011, p. 2060-2061 0021-9193/11/\$12.00 doi:10.1128/JB.00076-11 Copyright © 2011, American Society for Microbiology. All Rights Reserved.

Complete Genome Sequence of *Mycoplasma haemofelis*, a Hemotropic Mycoplasma[∀]

Emily N. Barker,^{1*} Chris R. Helps,¹ Iain R. Peters,¹ Alistair C. Darby,² Alan D. Radford,³ and Séverine Tasker¹

School of Veterinary Sciences, University of Bristol, Langford, United Kingdom¹; Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom²; and Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom³

GENOME ANNOUNCEMENT


40000

Genome Sequence for "Candidatus Mycoplasma haemominutum," a Low-Pathogenicity Hemoplasma Species

Emily N. Barker,^a Alistair C. Darby,^b Chris R. Helps,^a Iain R. Peters,^a Margaret A. Hughes,^b Alan D. Radford,^c Marilisa Novacco,^d Felicitas S. Boretti,^d Regina Hofmann-Lehmann,^d and Séverine Tasker^a

School of Veterinary Sciences, University of Bristol, Langford, United Kingdom⁵; Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, United Kingdom⁵; School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom⁵; and Vetsuisse Fakultät, Universität Zürich, Zürich, Switzerland³

We present the genome sequence of "*Candidatus* Mycoplasma haemominutum" strain Birmingham 1, a low-pathogenicity feline hemoplasma strain.

Kerken Acknowledgements

University of Bristol

Dr Chris Helps, Dr Iain Peters, Professor Tim Gruffydd-Jones, Professor Michael Day

University of Liverpool Dr Alistair Darby, Dr Alan Radford

University of Zürich

Prof. Regina Hoffmann-Lehmann, Dr Barbara Willi, Dr Felicitas Boretti, Dr Marilisa Novacco

🖌 Funding

Pfizer Animal Health (PhD); University of Bristol (PhD & sequencing); RCVS Trust (sequencing); Wellcome Trust (samples)

Keen Any Questions?

Next Generation Sequencing – The Role of New Sequence Technologies in Shaping the Future of Veterinary Science

Hosted by the RCVS Charitable Trust

